Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

نویسندگان

  • Dun-Sheng Yang
  • Philip Stavrides
  • Panaiyur S Mohan
  • Susmita Kaushik
  • Asok Kumar
  • Masuo Ohno
  • Stephen D Schmidt
  • Daniel W Wesson
  • Urmi Bandyopadhyay
  • Ying Jiang
  • Monika Pawlik
  • Corrinne M Peterhoff
  • Austin J Yang
  • Donald A Wilson
  • Peter St George-Hyslop
  • David Westaway
  • Paul M Mathews
  • Efrat Levy
  • Ana M Cuervo
  • Ralph A Nixon
چکیده

The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain

Dysregulated autophagic-lysosomal degradation of proteins has been linked to the most common genetic defect in familial Alzheimer disease, and has been correlated with disease progression in both human disease and in animal models. Recently, it was demonstrated that the expression of MAPK14/p38α protein is upregulated in the brain of APP-PS1 transgenic Alzheimer mouse and further that genetic d...

متن کامل

Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure

Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival. This study aims to investigate the regenerative potentia...

متن کامل

Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations

Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimer's disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selectiv...

متن کامل

The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease.

As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles-a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discove...

متن کامل

Lysosomal Proteolysis and Autophagy Do Not Require Presenilins

Mutations in genes for presenilins (PS1 and PS2) lead to early-onset familial Alzheimer’s disease (FAD). It was recently shown that PS1 is required for macroautophagy in mouse blastocysts, and lysosomal proteolysis was proposed as a potential therapeutic target in FAD. Zhang et al. have meticulously tested that hypothesis and found it flawed. The previous work asserted that in cells lacking PS1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Autophagy

دوره 7 7  شماره 

صفحات  -

تاریخ انتشار 2011